L1S2: CHIM 121: CONTROLE CONTINU

PARTIE A : BASES DE LA CHIMIE INORGANIQUE

Question n° 1

La formule du chlorure de tétraamminedichlorochrome(III) est la suivante :

Réponse A : [Cr(NH₃)₄Cl₂]Cl

Réponse B : [CrCl₂(NH₃)₄]Cl

Réponse C : $CI[Cr(NH_3)_4CI_2]$

 $\underline{R\acute{e}ponse\ D}:\ [Cr(NH_3)_4Cl]Cl_2$

Réponse E : $[Cr(NH_3)_4Cl_2]Cl_2$

Question n° 2

Le nom du complexe $[Cr(OH)(H_2O)_3(NH_3)_2](NO_3)_2$ est le suivant :

<u>Réponse A</u> : dinitrate de diamminetriaquahydroxochrome(III)

<u>Réponse B</u> : nitrate de diamminetriaquahydroxochrome(III)

<u>Réponse C</u>: nitrate d'hydroxodiamminetriaquachrome(III)

<u>Réponse D</u>: nitrate de diamminetriaquahydroxychrome(III)

Réponse E : nitrate de diamminetriaquahydroxochromate(III)

Question n° 3

L'ion Sn²⁺ peut former trois complexes avec l'ion fluorure F⁻ : [SnF]⁺, SnF₂ et [SnF₃]⁻. Les pK_D successifs du complexe [SnF₃]⁻ sont les suivants :

pK _{D3}	0,49
pK _{D2}	2,5
pK _{D1}	6,26

L'une des propositions suivantes est fausse. Laquelle ?

<u>Proposition A</u>: L'ion Sn^{2+} prédomine en solution lorsque la concentration en ions F^{-} est inférieure à 5,5 10^{-7} mol.L⁻¹.

<u>Proposition B</u>: Le complexe SnF₂ prédomine en solution lorsque la concentration en ions F⁻ est comprise entre 3,2 10⁻³ et 3,2 10⁻¹ mol.L⁻¹.

<u>Proposition C</u>: Le complexe [SnF]⁺ne se dismute pas.

<u>Proposition D</u>: La constante de formation globale du complexe [SnF₃] est β_3 = 10^{9,25}.

<u>Proposition E</u>: La constante de formation globale du complexe SnF_2 est β_2 = $10^{2.99}$.

Question n° 4

A un litre de solution de $CaCl_2$ à 0,1 mol.L $^{-1}$, on ajoute sans variation de volume 0,1 mole d'EDTA tétrasodique noté Na_4Y .

Il se forme le complexe [CaY]²⁻ dont la constante de dissociation est $K_{D1} = 10^{-10.7}$.

La concentration molaire en ions Ca²⁺ non complexés est :

 Réponse A :
 3,8 10⁻¹ mol.L⁻¹

 Réponse B :
 6,2 10⁻⁸ mol.L⁻¹

 Réponse C :
 1,4 10⁻⁶ mol.L⁻¹

 Réponse D :
 5,3 10⁻⁵ mol.L⁻¹

 Réponse E :
 4,0 10⁻⁵ mol.L⁻¹

Question n° 5

A la solution obtenue à la question $\bf 4$, on ajoute sans variation de volume 0,1 mole de $CaCl_2$.

L'une des propositions suivantes est fausse. Laquelle ?

<u>Proposition A</u>: L'équilibre $[CaY]^{2-} \Rightarrow Ca^{2+} + Y^{4-}$ se déplace vers la gauche.

<u>Proposition B</u>: A l'équilibre, $[Y^{4-}] = 2 \cdot 10^{-11} \text{ mol.L}^{-1}$

<u>Proposition C</u>: A l'équilibre, $[Ca^{2+}] = 2 \cdot 10^{-11} \text{ mol.L}^{-1}$

<u>Proposition D</u>: A l'équilibre, [CaY²⁻] = 0,1 mol.L⁻¹

<u>Proposition E</u>: L'équation de conservation de la matière pour l'ion Ca²⁺ s'écrit :

 $[CaY^{2-}] + [Ca^{2+}] = 0.2 \text{ mol.L}^{-1}$

PARTIE B : BASES DE LA CHIMIE ORGANIQUE

DONNEES

Energies de dissociation des liaisons en kJ.mol⁻¹.

C-C	C=C	C-O	C=O	C-H	0=0	H-H
347	615	350	737	414	495	435

Longueurs approximatives des liaisons (évaluées par la formule empirique) :

С-Н	C-O	C=O	C-C	C=C
1,05 ± 0,03	1,46 ± 0,04	1,25 ± 0,04	1,54 ± 0,05	1,33 ± 0,04

Energie de sublimation du carbone graphite : $\Delta_{sub}H^0 = 718 \text{ kJ.mol}^{-1}$.

Masses molaires:

С	Н	N	0	S
12	1	14	16	32

Structure de la molécule de méthanoate de méthyle HCOOCH3:

Valeurs expérimentales des longueurs des liaisons : 1,08 A $^{\circ}$ - 1,21 A $^{\circ}$ - 1,39 A $^{\circ}$

Question n° 6

Une molécule organique a une masse molaire de 99 g.mol⁻¹ et contient en pourcentage massique : 72,73 % de carbone et 11,11 % d'hydrogène. Sa formule brute peut être :

 $\begin{array}{lll} \underline{Proposition \ A}: & C_3H_{15}O_3\\ \underline{Proposition \ B}: & C_5H_7S\\ \underline{Proposition \ C}: & C_5H_9NO\\ \underline{Proposition \ D}: & C_6H_{11}O\\ \underline{Proposition \ E}: & C_6H_{13}N \end{array}$

Le méthanoate de méthyle à pour formule semi développée HCOOCH₃, sa structure est indiquée dans les données.

Question n° 7

Les états d'hybridation des deux atomes de carbone dans cette molécule HCOOCH₃ sont :

Proposition A: 2 carbones sp^3 Proposition B: 2 carbones sp^2 .

<u>Proposition C</u>: 1 carbone sp² et 1 carbone sp <u>Proposition D</u>: 1 carbone sp² et 1 carbone sp³. <u>Proposition E</u>: 1 carbone sp³ et 1 carbone sp

Question n°8

Les longueurs de liaisons sont :

Proposition A: d_1 = 1,21 A°; d_2 = 1,08 A°; d_3 = 1,39 A° Proposition B: d_1 = 1,08 A°; d_2 = 1,39 A°; d_3 = 1,21 A° Proposition C: d_1 = 1,21 A°; d_2 = 1,39 A°; d_3 = 1,08 A° Proposition D: d_1 = 1,39 A°; d_2 = 1,08 A°; d_3 = 1,21 A° Proposition E: d_1 = 1,08 A°; d_2 = 1,21 A°; d_3 = 1,39 A°

Question n°9

L'enthalpie standard de formation expérimentale à 298 K et à l'état gazeux du méthanoate de méthyle $HCOOCH_3(g)$ est de $\Delta_f H^0_{298}$ = -360 kJ.mol⁻¹. Evaluer son énergie de résonance.

Proposition A: $E_R = 148 \text{ kJ.mol}^{-1}$. Proposition B: $E_R = 8 \text{ kJ.mol}^{-1}$. Proposition C: $E_R = 28 \text{ kJ.mol}^{-1}$. Proposition D: $E_R = 68 \text{ kJ.mol}^{-1}$. Proposition E: $E_R = 368 \text{ kJ.mol}^{-1}$.