CORRIGE

PARTIE A: BASES DE LA CHIMIE ORGANIQUE: LE FURANNE

	С	0	Н
Masse molaire	12 g.mol ⁻¹	16.g.mot ⁻¹	1 g.mot¹
Z	6	8	1
Z* de Slater	3,25	4,55	1

DONNES THERMODYNAMIQUES:

Energies de dissociation des liaisons en kJ.mol⁻¹.

Н-Н	С-Н	C-0	C=0	C-C	C=C	0=0	О-Н
436	413	351	720	348	615	498	463

Enthalpie de sublimation du graphite : 615 kJ.mol-1

Question 1: Les formules de calcul des charges nucléaires effectives Z* de Slater pour un électron de la couche de valence des atomes de carbone et d'oxygène sont : (0,5 point)

	Atome de Carbone	Atome d'Oxygène
Proposition A	$Z^* = 7 - 3 \sigma_{2s,2p} - 2 \sigma_{1s}$	$Z^* = 8 - 2 \sigma_{2s,2p} - 5 \sigma_{1s}$
Proposition B	$Z^* = 6 - 3 \sigma_{2s,2p} - 2 \sigma_{1s}$	$Z^* = 8 - 6 \sigma_{1s} - 2 \sigma_{2s,2p}$
Proposition C	$Z^* = 7 - 3 \sigma_{2s,2p} - 2 \sigma_{1s}$	$Z^* = 8 - 5 \sigma_{2s,2p} - 2 \sigma_{1s}$
**** Proposition D	$Z^* = 6 - 3 \sigma_{2s,2p} - 2 \sigma_{1s}$	$Z^* = 8 - 5 \sigma_{2s,2p} - 2 \sigma_{1s}$
Proposition E	$Z^* = 6 - 4 \sigma_{2s,2p} - 2 \sigma_{1s}$	$Z^* = 7 - 5 \sigma_{2s,2p} - 2 \sigma_{1s}$

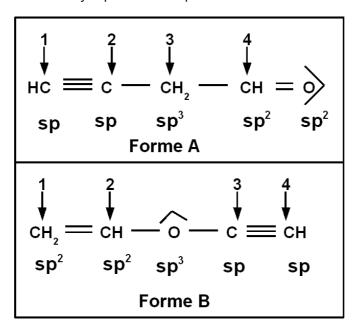
C 1s² 2s² 2p²
Z* = 6 - 3
$$\sigma_{2s,2p}$$
 - 2 σ_{1s} = 6 - 3 · 0,35 -2 · 0,85 = 3,25
O 1s² 2s² 2p⁴
Z* = 8 - 5 $\sigma_{2s,2p}$ - 2 σ_{1s} = 8 - 5 · 0,35 -2 · 0,85 = 4,55

Le furanne a pour formule brute C₄H₄O.

Question 2: L'analyse élémentaire du furanne en pourcentages massiques est : (0,5 point)

	% massique C	% massique H	% massique O
Proposition A	70,59	8,88	23,53
Proposition B	50,58	15,22	34,20
Proposition C	78,29	12,35	9,36
**** Proposition D	70,59	5,88	23,53
Proposition E	45,23	5,88	41,55

%C = 4 * 12 / (12*4 + 4 + 16) * 100 = 70,59 % %H = 4 * 1 / (12*4 + 4 + 16) * 100 = 5,88 % %O = 1 * 16 / (12*4 + 4 + 16) * 100 = 23,53 %


Question 3 : Par combustion complète de 0,544 g de ce composé on obtiendra : (0,5 point)

	CO ₂	H ₂ O
Proposition A	2,603 g	0,123 g
**** Proposition B	1,408 g	0,288 g
Proposition C	0,032 mole	0,032 mole
Proposition D	1,408 g	0,576 g
Proposition E	0,048 mole	0,016 mole

 $C_4H_4O + 9/2 O_2 = 4 CO_2 + 2H_2O$

C ₄ H ₄ O	4 CO ₂	2 H₂O
M = 4*12+4+16 = 68 g	4 · 44 = 176 g	2 · 18 = 36 g
0,544 g	0,544 · 176 / 68 = 1,408 g	0,544 · 36 / 68 = 0,288 g
0,008 mole	4 · 0 008 = 0,032 mole	2 · 0,008 = 0,016 mole

On propose les enchaînements non cycliques suivants pour cette molécule :

NOTA : On ne tiendra aucun compte d'un effet mésomère éventuel pour répondre aux questions 3 et 4, concernant les formes A et B. La numérotation arbitraire des carbones est indiquée sur les figures. Les doublets libres éventuels ne sont pas représentés.

Question 4: Pour la forme A les états d'hybridations des atomes C et O sont : (0,5 point)

	<i>C1</i>	C2	<i>C3</i>	C4	0
Proposition A :	sp	sp²	sp³	sp	sp³
**** <u>Proposition B</u>	sp	sp	sp ³	sp ²	sp ²
Proposition C	sp	sp	sp ²	sp³	sp
Proposition D	sp ²	sp	sp	sp²	sp ³
Proposition E	sp	sp³	sp ²	sp	sp ²

Question 5: Pour la forme B les états d'hybridations des atomes C et O sont :(1 poi

	C1	C2	С3	C4	o
Proposition A:	sp ³	sp ²	sp ²	sp	sp ²
Proposition B	sp ²	sp ²	sp³	sp ²	sp ²
Proposition C	sp ³	sp ²	sp	sp	sp ²
**** <u>Proposition D</u>	sp ²	sp ²	sp	sp	sp ³
Proposition E	sp³	sp ²	sp	sp	sp ³

On peut aussi envisager la forme cyclique suivante :

Nota : Les doublets libres et les éventuelles liaisons multiples ne figurent pas sur ce schéma simplifié.: Cette forme cyclique est la forme réelle de la molécule appelée furanne étudiée ici.

On rappelle la formule empirique de calcul des rayons de covalence en A $^{\circ}$: R = 0,215 n 2 /Z * + 0,148 n + 0,225

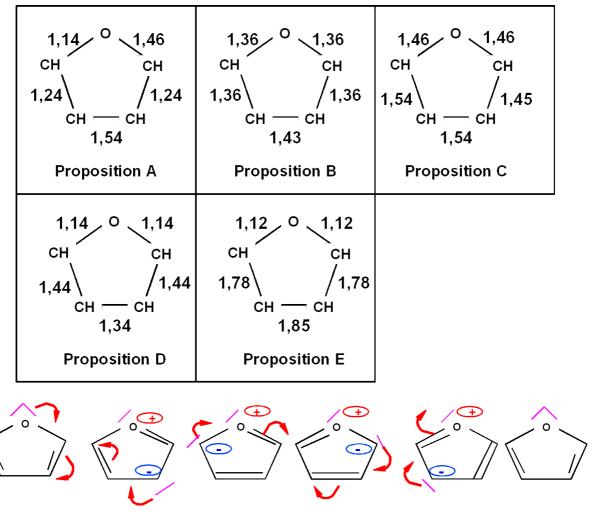
Question 6: En utilisant cette formule pour le calcul des rayons de covalences du carbone et de l'oxygène on obtient :(0,5 point)

*****Proposition A: Rc = 0,786 A° et Ro = 0,710 A°

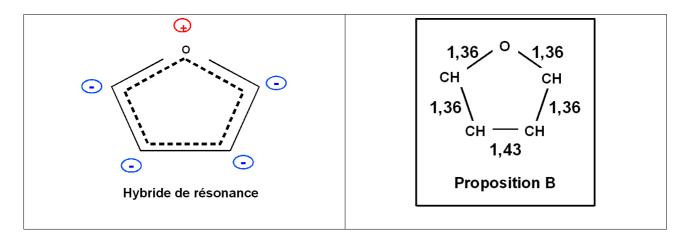
Proposition B: R_{c} = 0,556 A° et R_{o} = 0,412 A° **Proposition C**: R_{c} = 0,715 A° et R_{o} = 0,758 A° **Proposition D**: R_{c} = 0,856 A° et R_{o} = 0,610 A° **Proposition E**: R_{c} = 0,854 A° et R_{o} = 0,498 A°

On rappelle que les longueurs de liaisons simples en A° peuvent être évaluées :

- > A partir des rayons de covalences par la formule empirique :
 - $d_{AB} = 1,11 (R_A + R_B) 0,203$
 - > Ou à partir des Z* par la formule équivalente :


 $d_{AB} = 0.239 (n_A^2/Z_A^* + n_B^2/Z_B^*) + 0.164 (n_A + n_B) + 0.297$

Pour les liaisons multiples : liaison double 86 % de la simple liaison triple 78 % de la simple


Question 7: En utilisant une de ces deux formules au choix on trouve pour les longueurs de liaisons carbone/carbone et carbone/oxygène:(0,25 point)

	C - C	C = C	C - O	C = O
Proposition A:	1,74 A°	1,54 A°	1,26 A°	1,12 A°
Proposition B	1,54 A°	1,33 A°	1,24 A°	0,74 A°
Proposition C	1,24 A°	1,14 A°	1,36 A°	1,18 A°
****Proposition D	1,54 A°	1,33 A°	1,46 A°	1,25 A°
Proposition E	1,45 A°	1,15 A°	1,82 A°	1,64 A°

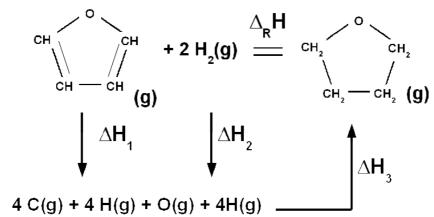
Question 8 : Pour la forme cyclique C les longueurs de liaisons expérimentales seront : (1 point)

Mésomérie du furanne

Par mésomérie les liaisons CO et CC sont en fait intermédiaires entre double et simple liaison. 1,33 < CC < 1,54 et 1,25 CO < 1,46

Les deux liaisons CC qui sont doubles dans la forme mésomère principale non chargée doivent être plus courte que la liaison CC simple dans cette même forme mésomère.

La symétrie de la molécule doit être respectée.


Seule la proposition B répond à ces critères.

On envisage la réaction d'hydrogénation du furanne qui s'écrit :

La réaction d'hydrogénation du furanne réel a pu être mesurée , on a trouvé : $\Delta_{\text{hydrogénation}}H^0$ = - 151 kJ.mol⁻¹.

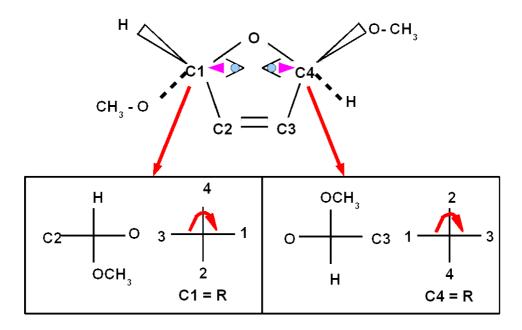
Question 9 : Evaluer à partir des données thermodynamiques fournies cette enthalpie d'hydrogénation pour la forme mésomère de plus haut poids statistique du furanne. On trouve pour cette forme hypothétique du furanne : (2 points)

Proposition D: $\Delta_{\text{hydrogénation}} H^{\circ} = -106 \text{ kJ.mol}^{-1}$. **Proposition E**: $\Delta_{\text{hydrogénation}} H^{\circ} = -516 \text{ kJ.mol}^{-1}$.

$$\begin{split} \Delta H_1 &= 2 \; E_{CO} + 4 \; E_{CH} + E_{C-C} + 2 \; E_{C=C} \\ \Delta H_2 &= 2 \; E_{H-H} \\ \Delta H_1 &= -2 \; E_{CO} - 8 \; E_{CH} - 3 \; E_{C-C} \\ \Delta_R H &= 2 \; E_{C-O} + 4 \; E_{CH} + E_{C-C} + 2 \; E_{C=C} - 2 \; E_{C-O} \; + 2 \; E_{H-H} - 8 \; E_{C-H} - 3 \; E_{C-C} \\ \Delta_R H &= 2 \; E_{C=C} + 2 \; E_{H-H} - 4 \; E_{C-H} - 2 \; E_{C-C} \\ \Delta_R H &= 2 \; * \; 615 + 2 \; * 436 - 4 \; * \; 413 - 2 \; * \; 348 = - \; 246 \; kJ.mol^{-1}. \end{split}$$

Question 10: Par comparaison des enthalpie standard d'hydrogénation de la molécule réelle et de la molécule hypothétique à liaisons localisées, on peut évaluer l'énergie de résonance du furanne, on trouve ainsi :(0,5 point)

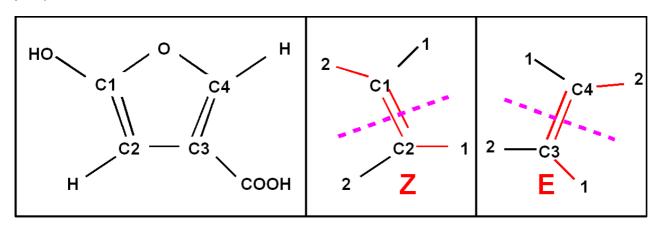
Proposition A: E_R = 15 kJ.mol⁻¹. Proposition B: E_R = 25 kJ.mol⁻¹. Proposition C: E_R = 75 kJ.mol⁻¹. ******Proposition D: E_R = 95 kJ.mol⁻¹. Proposition E: E_R = 205 kJ.mol⁻¹. A cause de l'effet mésomère on peut prévoir pour l'hybride de résonance du furanne que les atomes de carbones seront légérement porteurs de charges électriques:



La numérotation arbitraire des carbones est indiquée sur la figure.

Question 11 : La nature des charges électriques portées par les atomes de carbone seront :(1 point)

	C1	C2	<i>C3</i>	C4
Proposition A:	négatif	positif	positif	négatif
Proposition B	négatif	négatif	positif	positif
***** Proposition C	négatif	négatif	négatif	négatif
Proposition D	positif	positif	positif	positif
Proposition E	positif	négatif	négatif	positif


Question 12 : Pour le dérivé du furanne suivant, établir les configurations des atomes de carbone :(1 point)

L1 S2 – CHIM 121 – BASES CHIMIE ORGANIQUE ET INORGANIQUE – SESSION 2 - 2007

	C1	C4
***** <u>Proposition A</u>	R	R
Proposition B	R	S
Proposition C	S	S
Proposition D	S	R
Proposition E	méso	thréo

Question 13 : Pour la structure suivante, déterminer , la stéréochimie (E,Z) des deux doubles liaisons.(0,5 point)

	C1 = C2	C3 = C4
Proposition A:	E	E
Proposition B	E	Z
***** <u>Proposition C</u>	Z	Е
Proposition D	Z	Z
Proposition E	Pas d'isomérie E,Z	Z

PARTIE B : BASES DE LA CHIMIE INORGANIQUE :

Question n° 14: Soit une solution à 10^{-2} mol.L⁻¹ du complexe [Fe(SCN)]²⁺, dont la constante de dissociation est KD1 = 10^{-2} .

La concentration en Fe³⁺ libre dans la solution est égale à :

Réponse A: 8,5 10⁻⁴ mol.L⁻¹

<u>Réponse B</u>: 2,8 10⁻³ mol.L⁻¹

<u>Réponse C</u>: 6,2 10⁻³ mol.L⁻¹

Réponse D: 10^{-3} mol.L⁻¹

Réponse E: 7,7 10⁻⁵ mol.L⁻¹

Question nº 15

Soit une solution de Fe³⁺ à 10⁻² mol.L⁻¹.

Quel excès de SCN⁻ (concentration de SCN⁻ dans la solution à l'équilibre) doit-on ajouter pour qu'il ne reste que 1% de fer III sous forme non complexée ?

Réponse A: 1 mol.L⁻¹

Réponse B: 0,5 mol.L⁻¹

Réponse C: 0,1 mol.L⁻¹

Réponse D: 0,05 mol.L⁻¹

Réponse E: 0,01 mol.L⁻¹

<u>Question n° 16</u>: Le complexe $[Fe(SCN)]^{2+}$ est rouge, avec une coloration perceptible à partir d'une concentration d'environ 10^{-5} mol.L⁻¹.

On ajoute, sans variation de volume, du fluorure de sodium solide NaF à la **solution de la question n° 14**. La constante de dissociation du complexe [FeF]²⁺est K'D1 = 10⁻⁵.

Quel excès de F⁻ (concentration de F⁻ dans la solution à l'équilibre) doit-on ajouter pour obtenir la décoloration de la solution ?

Réponse A: 1 mol.L⁻¹

Réponse B: 0,5 mol.L⁻¹

Réponse C: 0,1 mol.L⁻¹

Réponse D: 0,05 mol.L⁻¹

Réponse E: 0,01 mol.L⁻¹

Question n° 17:

On ajoute des ions CN⁻ à une solution aqueuse d'ions Hg²⁺ à 0,01 mol.L⁻¹. Les constantes de dissociation successives du complexe [Hg(CN)₄]²⁻ sont :

KD1 = 10 ⁻¹⁸	KD2 = 10 ^{-16,7}	KD3 = 10 ^{-3,8}	KD4 = 10 ⁻³

Quelle est l'espèce prédominante si la concentration en ions CN⁻ à l'équilibre est égale à 10⁻⁶ mol I ⁻¹ ?

Réponse A : [Hg(CN)₄]²⁻

Réponse B : [Hg(CN)₃]

 $\underline{R\acute{e}ponse\ C}:\ [Hg(CN)_2]$

 $\underline{R\acute{e}ponse\ D}:\ [Hg(CN)]^{\scriptscriptstyle +}$

Réponse E: Hg2+

<u>Question n° 18</u>: Quelle est la concentration en ions Hg^{2+} libres dans la **solution de la question n° 17**?

<u>Réponse A</u>: 10^{-16,7} mol.L⁻¹

Réponse B: 10⁻¹⁸ mol.L⁻¹

<u>Réponse C</u>: 10^{-24,7} mol.L⁻¹

Réponse D: 10⁻²⁰ mol.L⁻¹

Réponse E: 10^{-18,7} mol.L⁻¹

Question n° 19

L'une des propositions suivantes est fausse. Laquelle ?

<u>Proposition A</u>: Le sodium réduit l'eau selon :

 $2 \text{ Na} + 2 \text{ H}_2\text{O} = \text{H}_2 + 2 \text{ OH}^- + 2 \text{ Na}^+$

<u>Proposition B</u>: Le dioxyde de soufre SO₂ est une base selon Bronsted.

<u>Proposition C</u>: L'acide perchlorique $HClO_4$ est un acide plus fort que l'acide chloreux $HClO_2$.

<u>Proposition D</u>: L'oxyde de zinc ZnO est amphotère, et peut être dissout en milieu acide ou en milieu basique.

<u>Proposition E</u>: On forme de l'hydroxyde de lithium par réaction de l'oxyde de lithium sur l'eau, en raison des propriétés basiques de l'ion oxyde O^{2-} .

RECAPITULATIF GRILLE MAITRE

QUESTION	REPONSE	BAREME
1	D	0,5
2	D	0,5
3	В	0,5
4	В	0,5
5	D	1
6	Α	0,5
7	D	0,5
8	В	1
9	С	2
10	D	0,5
11	С	1
12	Α	1
13	С	0,5
14		
15		
16		
17		
18		
19		
		20