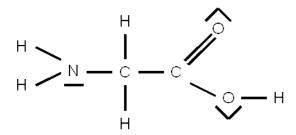
THIERRY BRIERE

http://personnel.univ-reunion.fr/briere

Cette page (et tous les documents qui y sont attachés) est mise à disposition sous un <u>contrat Creative Commons</u>


Vous pouvez l'utiliser à des fins pédagogiques et NON COMMERCIALES, sous certaines réserves dont la citation obligatoire du nom de son auteur et l'adresse

http://personnel.univ-reunion/briere de son site d'origine pour que vos étudiants puissent y accéder. Merci par avance de respecter ces consignes. Voir contrat...

PCEM - TEST N°11

Un acide aminé : Le glycocolle

On s'intéresse au glycocolle, acide aminé de structure de Lewis.

Toutes les données thermodynamiques sont pour T = 300 K sous la pression de P = 1 bar. Le glycocolle est solide dans ces conditions.

Pour toutes les questions on suppose qu'on est à la même température de $T = 300 \ K$. Pour cet acide aminé à $T = 300 \ K$, on prendra **pKa1 = 5** et **pKa2 = 9**

On donne les enthalpies standards de formation suivantes :

	CO ₂ (g)	H₂O(I)
$\Delta_{\text{formation}} H^0 \text{ (kJ.mol}^{-1})$	-400	-290

On donne les enthalpies standards de dissociation de liaisons suivantes :

Liaison	C-C	С-Н	C-N	C-O	C=O	Н-Н	N-H	N≡N	О-Н	0=0
ΔH⁰dissociation (kJ.mol⁻¹)	350	400	300	350	800	400	400	1000	450	500

On donne les enthalpies standards de changement d'état suivantes :

	C(s) = C(g)	$H_2O(I)=H_2O(g)$	NH_2 - CH_2 - $COOH(s) = NH_2$ - CH_2 - $COOH(g)$
ΔH ⁰ (kJ.mol ⁻¹)	700	40	200

Question 1: (4 points). L'enthalpie standard de formation d'une mole de cet acide

aminé est :

Réponse A : $\Delta_R H^0$ formation = - 950 kJ.mol⁻¹

Réponse B : $\Delta_R H^0$ formation = - 650 kJ.mol⁻¹

Réponse C : $\Delta_R H^0$ formation = + 950 kJ.mol⁻¹

Réponse D : $\Delta_R H^0$ formation = + 150 kJ.mol⁻¹

Réponse E : $\Delta_R H^0$ formation = - 350 J.mol⁻¹.K⁻¹

Question 2 : (4 points). L'enthalpie standard de la réaction de combustion d'une mole

de cet acide aminé, qui s'écrit : NH_2 - CH_2 -COOH(s)+ x $O_2(g)$ = y $CO_2(g)$ + z $H_2O(I)$ + w $N_2(g)$ est:

Réponse A : $\Delta_R H^0$ combustion = - 285 J.K⁻¹

Réponse B : $\Delta_R H^0$ combustion =- 325 kJ.mol⁻¹

Réponse C : $\Delta_R H^0$ combustion = - 875 kJ.mol⁻¹

<u>Réponse D</u> : $\Delta_R H^0$ combustion = - 125 kJ.mol⁻¹

Réponse E : $\Delta_R H^0$ combustion = - 845 J.mol⁻¹

Question 3 : (2 points). Le diagramme de prédominance de cet acide aminé est :

Réponse A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Réponse B	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Réponse C	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Réponse D	⊕ ⊕ ⊖ ⊝ ⊝ ⊢ ⊕ ⊖ ⊢ ⊕ ⊖ ⊢ ⊕ ⊖ ⊢ ⊕ ⊖ ⊢ ⊕ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
Réponse E	NH ₃ -CH ₂ -C00 ⊕ ⊕ ⊕ ⊕ ⊕ NH ₃ -CH ₂ -C00 NH ₃ -CH ₂ -C00 PH pK₁ pK₂ pK₂ PH PH

Question 4: (2 points). Le pH d'une solution aqueuse à 0,1 mol.L-1 de cet acide

aminé est de :

Réponse A : pH = 5.0Réponse B : pH = 6.0

Réponse C : pH = 7,0, **Réponse D** : pH = 8,0

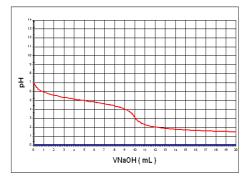
Réponse E : pH= 9,0

Question 5: *(3 points).* On dissout 0,1 mole de cet acide aminé dans de l'eau puis on ajuste le pH de la solution obtenue à la valeur pH = 6. On obtient ainsi un litre de solution de pH = 6. Dans cette solution, les molarités des diverses espèces seront :

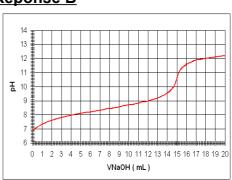
	Θ	①	Θ Θ
	NH ₂ -CH ₂ -COO	NH ₃ —CH ₂ —COOH	NH ₃ -CH ₂ -COO
Réponse A	9,08 10 ⁻³ mol.L ⁻¹	9,08 10 ⁻⁴ mol.L ⁻¹	9,08 10 ⁻² mol.L ⁻¹
Réponse B	9,08 10 ⁻³ mol.L ⁻¹	9,08 10 ⁻⁵ mol.L ⁻¹	9,08 10 ⁻² mol.L ⁻¹
Réponse C	9,08 10 ⁻⁵ mol.L ⁻¹	9,08 10 ⁻² mol.L ⁻¹	9,08 10 ⁻³ mol.L ⁻¹
Réponse D	9,08 10 ⁻² mol.L ⁻¹	9,08 10 ⁻⁵ mol.L ⁻¹	9,08 10 ⁻³ mol.L ⁻¹
Réponse E :	9,08 10 ⁻⁵ mol.L ⁻¹	9,08 10 ⁻³ mol.L ⁻¹	9,08 10 ⁻² mol.L ⁻¹

Question 6: **(2 points).** Dans le glycocolle, les nombres d'oxydation des atomes d'azote et de carbone sont :

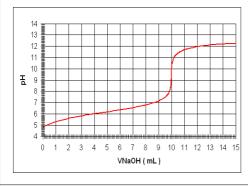
	Azote de NH ₂	Carbone de CH ₂	Carbone de COOH
Réponse A	N.O = - 3	N.O = - 1	N.O = +3
Réponse B	N.O = - 3	N.O = - 3	N.O = +3
Réponse C	N.O = 0	N.O = + 2	N.O = - 3
Réponse D	N.O = + 1	N.O = 0	N.O = - 1
Réponse E :	N.O = + 3	N.O = + 2	N.O = + 1

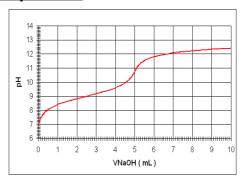

Question 7 : (3 points). Dans un bécher, on introduit un volume $V_1 = 10$ mL d'une solution de glycocolle à la concentration $C_1 = 0.1$ mol.L⁻¹.

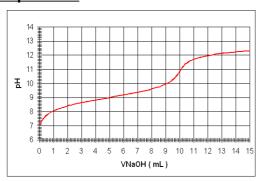
On verse progressivement une solution de soude (Na $^+$ OH $^-$) de concentration $C_{NaOH} = 0,1$ mol.L $^{-1}$.


On suit la variation du pH en fonction du volume V_{NaOH} de soude versé.

On obtient la courbe de titrage :


Réponse A


Réponse B


Réponse C

Réponse D

Réponse E:

